# Mathematical

$x$ and $y$ represent variables as time series or dots

SyntaxExampleOutput

$ceil(x)$

$ceil([1.2, 2, 3.7])$

$[2,2,4]$

$round(x, n)$

$round([1.22222, 2.9994332], 3)$

$[1.222, 2.999]$

$sin(x)$

$sin([0, 90])$

$[0, 0.893$

$cos(x)$

$cos([0, 90])$

$[1, -0.448]$

$tan(x)$

$tan([0, 90])$

$[0, -1.995]$

$arcsin(x)$

$arcsin([0, 90])$

$[0]$

$arccos(x)$

$arccos([0, 90])$

$[1.570]$

$arctan(x)$

$arctan([0, 90])$

$[0]$

$arctan2(x, y)$

Assuming that the variables are sampled every minute. $arctan2([1, 2], [0.1, 1])$

$[1.471127, 1.1071]$

$sinh(x)$

$sinh([0, 90])$

$[0, 6.1020exp38]$

$cosh(x)$

$cosh([0, 90])$

$[1, 6.1020exp38]$

$tanh(x)$

$tanh([0, 90])$

$[0, 1]$

$arcsinh(x)$

$arcsinh([0, 90])$

$[0, 5.19]$

$arccosh(x)$

$arccosh([0, 90])$

$[5.192]$

$arctanh(x)$

$arctanh([0, 90])$

$[0]$

$exp(x)$

$exp([-1, 0, 1, 2])$

$[0.367, 1.0, 2.718, 7.389]$

$log(x, base)$

$log([1, 2])$

$[0, 0.693]$

$abs(x)$

$abs([-1, 0, 1, 2])$

$[1, 0, 1 ,2]$

$sqrt(x)$

$sqrt[1,4]$

$[1,2]$

Last updated